On Non-Polynomial Latin Squares

نویسندگان

  • Otokar Grosek
  • Peter Horák
  • Tran van Trung
چکیده

A Latin square L = L(`ij) over the set S = {0, 1, . . . , n − 1} is called totally non-polynomial over Zn iff 1. there are no polynomials Ui(y) ∈ Zn[y] such that Ui(j) = `ij for all i, j ∈ Zn; 2. there are no polynomials Vj(x) ∈ Zn[x] such that Vj(i) = `ij for all i, j ∈ Zn. In the presented paper we describe four possible constructions of such Latin squares which might be of particular interest for cryptographers. Some estimations fro the number of such Latin squares is given as well. Key-words: Latin squares, polynomial approximation, block ciphers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 4 : 3 SAT and Latin Squares

This talk’s focus is on the computational complexity of completing partial Latin squares. Our first goal in this talk is to show that for many special classes of partial Latin squares, we can construct completions for these objects in polynomial time. From here, we will prove the fairly surprising claim that completing an arbitrary partial Latin square is an NP-complete task; so while it is “ea...

متن کامل

Atomic Latin Squares based on Cyclotomic Orthomorphisms

Atomic latin squares have indivisible structure which mimics that of the cyclic groups of prime order. They are related to perfect 1-factorisations of complete bipartite graphs. Only one example of an atomic latin square of a composite order (namely 27) was previously known. We show that this one example can be generated by an established method of constructing latin squares using cyclotomic or...

متن کامل

On the degree of local permutation polynomials∗

Every Latin square of prime or prime power order s corresponds to a polynomial in 2 variables over the finite field on s elements, called the local permutation polynomial. What characterizes this polynomial is that its restrictions to one variable are permutations. We discuss the general form of local permutation polynomials and prove that their total degree is at most 2s−4, and that this bound...

متن کامل

Permutation Polynomials Modulo w

We give an exact characterization of permutation polynomials mod ulo n w w a polynomial P x a a x adx d with integral coe cients is a permutation polynomial modulo n if and only if a is odd a a a is even and a a a is even We also characterize polynomials de ning latin squares mod ulo n w but prove that polynomial multipermutations that is a pair of polynomials de ning a pair of orthogonal latin...

متن کامل

Constructing Orthogonal Latin Squares from Linear Cellular Automata

We undertake an investigation of combinatorial designs engendered by cellular automata (CA), focusing in particular on orthogonal Latin squares and orthogonal arrays. The motivation is of cryptographic nature. Indeed, we consider the problem of employing CA to define threshold secret sharing schemes via orthogonal Latin squares. We first show how to generate Latin squares through bipermutive CA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2004